primary
hypothesis 1
Hypothesis: Compared to the message control condition, autonomously framed messages will be rated as more self-relevant
❌ These data are not consistent with this hypothesis. Based on the Bayes factor, there is very strong evidence for the null.
run model
rel_self_1 = lmer(msg_rel_self ~ condition + (1 | SID) + (1 | message), data = data_mod)
summary(rel_self_1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: msg_rel_self ~ condition + (1 | SID) + (1 | message)
## Data: data_mod
##
## REML criterion at convergence: 4099.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.8594 -0.3704 0.1055 0.4633 4.4901
##
## Random effects:
## Groups Name Variance Std.Dev.
## SID (Intercept) 0.57905 0.7610
## message (Intercept) 0.01299 0.1140
## Residual 0.41078 0.6409
## Number of obs: 1722, groups: SID, 345; message, 15
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -0.01365 0.06753 157.06873 -0.202 0.840
## conditionautonomous 0.02825 0.08764 342.99682 0.322 0.747
##
## Correlation of Fixed Effects:
## (Intr)
## conditntnms -0.624
bayes factor using BIC
Evidence for H0 (no condition effect)
rel_self_null = lmer(msg_rel_self ~ 1 + (1 | SID) + (1 | message), data = data_mod)
bayestestR::bayesfactor_models(rel_self_null, rel_self_1, denominator = 2) %>%
kable(format = "pandoc", row.names = FALSE)
Model | BF |
---|---|
1 + (1 | SID) + (1 | message) | 179.4431 |
condition + (1 | SID) + (1 | message) | 1.0000 |
plot predicted effects
ggeffects::ggpredict(rel_self_1, c("condition")) %>%
data.frame() %>%
mutate(x = ifelse(x == 1, "message control", "autonomous")) %>%
ggplot(aes(x = x, y = predicted, color = x)) +
geom_pointrange(aes(ymin = conf.low, ymax = conf.high)) +
scale_color_manual(name = "", values = palette_cond) +
scale_y_continuous(limits = c(-.3, .4)) +
labs(x = "", y = "predicted standardized rating\n", title = "self-relevance\n") +
theme_minimal() +
theme(legend.position = "none")
hypothesis 2
Hypothesis: Compared to the message control condition, autonomously framed messages will be associated with greater motivation to practice social distancing
❌ These data are not consistent with this hypothesis. Based on the Bayes factor, there is very strong evidence for the null.
run model
motiv_self_1 = lmer(msg_motiv_self ~ condition + (1 | SID) + (1 | message), data = data_mod)
summary(motiv_self_1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: msg_motiv_self ~ condition + (1 | SID) + (1 | message)
## Data: data_mod
##
## REML criterion at convergence: 4183.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.8075 -0.3348 0.1088 0.4553 4.1460
##
## Random effects:
## Groups Name Variance Std.Dev.
## SID (Intercept) 0.54730 0.7398
## message (Intercept) 0.02018 0.1421
## Residual 0.43986 0.6632
## Number of obs: 1722, groups: SID, 345; message, 15
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -0.00183 0.06997 104.18226 -0.026 0.979
## conditionautonomous 0.00180 0.08590 342.92424 0.021 0.983
##
## Correlation of Fixed Effects:
## (Intr)
## conditntnms -0.591
bayes factor using BIC
Evidence for H0 (no condition effect)
motiv_self_null = lmer(msg_motiv_self ~ 1 + (1 | SID) + (1 | message), data = data_mod)
bayestestR::bayesfactor_models(motiv_self_null, motiv_self_1, denominator = 2) %>%
kable(format = "pandoc", row.names = FALSE)
Model | BF |
---|---|
1 + (1 | SID) + (1 | message) | 192.8092 |
condition + (1 | SID) + (1 | message) | 1.0000 |
plot predicted effects
ggeffects::ggpredict(motiv_self_1, c("condition")) %>%
data.frame() %>%
mutate(x = ifelse(x == 1, "message control", "autonomous")) %>%
ggplot(aes(x = x, y = predicted, color = x)) +
geom_pointrange(aes(ymin = conf.low, ymax = conf.high)) +
scale_color_manual(name = "", values = palette_cond) +
scale_y_continuous(limits = c(-.3, .4)) +
labs(x = "", y = "predicted standardized rating\n", title = "motivation to practice social distancing\n") +
theme_minimal() +
theme(legend.position = "none")
hypothesis 3
Hypothesis: Compared to the message control condition, autonomously framed messages will be rated as being more likely to be shared.
❌ These data are consistent with this hypothesis, but the uncertainty around these estimates is large. Based on the Bayes factor, there is strong evidence for the null.
run model
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: msg_share ~ condition + (1 | SID) + (1 | message)
## Data: data_mod
##
## REML criterion at convergence: 3782.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.8240 -0.4247 0.0630 0.5035 2.9405
##
## Random effects:
## Groups Name Variance Std.Dev.
## SID (Intercept) 0.66350 0.8146
## message (Intercept) 0.01584 0.1258
## Residual 0.31764 0.5636
## Number of obs: 1722, groups: SID, 345; message, 15
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -0.07461 0.07154 160.57403 -1.043 0.2986
## conditionautonomous 0.15426 0.09189 342.87889 1.679 0.0941 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditntnms -0.618
bayes factor using BIC
Evidence for H0 (no condition effect)
share_null = lmer(msg_share ~ 1 + (1 | SID) + (1 | message), data = data_mod)
bayestestR::bayesfactor_models(share_null, share_1, denominator = 2) %>%
kable(format = "pandoc", row.names = FALSE)
Model | BF |
---|---|
1 + (1 | SID) + (1 | message) | 44.13225 |
condition + (1 | SID) + (1 | message) | 1.00000 |
plot predicted effects
ggeffects::ggpredict(share_1, c("condition")) %>%
data.frame() %>%
mutate(x = ifelse(x == 1, "message control", "autonomous")) %>%
ggplot(aes(x = x, y = predicted, color = x)) +
geom_pointrange(aes(ymin = conf.low, ymax = conf.high)) +
scale_color_manual(name = "", values = palette_cond) +
scale_y_continuous(limits = c(-.3, .4)) +
labs(x = "", y = "predicted standardized rating\n", title = "sharing intention\n") +
theme_minimal() +
theme(legend.position = "none")
hypothesis 4
Hypothesis: Self-relevance and motivation will be associated with higher sharing intentions, and these relationships will be stronger in the autonomous framing condition.
✅ These data are consistent with the hypothesis that self-relevance and motivation are associated with higher sharing intentions.
❌ However, not with the moderation hypothesis. Based on the Bayes factors, there is very strong evidence for the null (i.e., no moderation).
self-relevance
run model
share_mod_rel = lmer(msg_share ~ condition*msg_rel_self + (1 | SID) + (1 | message), data = data_mod)
summary(share_mod_rel)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: msg_share ~ condition * msg_rel_self + (1 | SID) + (1 | message)
## Data: data_mod
##
## REML criterion at convergence: 3399.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.0982 -0.4434 0.0356 0.4711 3.5965
##
## Random effects:
## Groups Name Variance Std.Dev.
## SID (Intercept) 0.51044 0.7144
## message (Intercept) 0.01019 0.1010
## Residual 0.25534 0.5053
## Number of obs: 1722, groups: SID, 345; message, 15
##
## Fixed effects:
## Estimate Std. Error df t value
## (Intercept) -0.06899 0.06178 181.88563 -1.117
## conditionautonomous 0.14290 0.08076 341.26985 1.769
## msg_rel_self 0.41559 0.02742 1660.95319 15.156
## conditionautonomous:msg_rel_self -0.00862 0.03868 1684.13218 -0.223
## Pr(>|t|)
## (Intercept) 0.2656
## conditionautonomous 0.0777 .
## msg_rel_self <0.0000000000000002 ***
## conditionautonomous:msg_rel_self 0.8237
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtnt msg_r_
## conditntnms -0.629
## msg_rel_slf 0.006 -0.004
## cndtntnm:__ -0.004 -0.001 -0.701
bayes factor using BIC
Evidence for H0 (no moderation)
share_mod_rel_null = lmer(msg_share ~ msg_rel_self + condition + (1 | SID) + (1 | message), data = data_mod)
bayestestR::bayesfactor_models(share_mod_rel_null, share_mod_rel, denominator = 2) %>%
kable(format = "pandoc", row.names = FALSE)
Model | BF |
---|---|
msg_rel_self + condition + (1 | SID) + (1 | message) | 417.5942 |
condition * msg_rel_self + (1 | SID) + (1 | message) | 1.0000 |
plot predicted effects
ggeffects::ggpredict(share_mod_rel, c("condition", "msg_rel_self [-1, 0, 1]")) %>%
data.frame() %>%
mutate(x = ifelse(x == 1, "message control", "autonomous"),
group = as.character(group),
group = ifelse(group == "0", "mean",
ifelse(group == "1", sprintf("+%s SD", group), sprintf("%s SD", group))),
group = factor(group, levels = c("-1 SD", "mean", "+1 SD"))) %>%
ggplot(aes(x = group, y = predicted, color = x)) +
geom_line(aes(group = x), position = position_dodge(width = .1)) +
geom_pointrange(aes(ymin = conf.low, ymax = conf.high), position = position_dodge(width = .1)) +
scale_color_manual(name = "", values = palette_cond) +
scale_y_continuous(limits = c(-.7, .8)) +
labs(x = "", y = "predicted standardized rating\n", title = "self-relevance\n") +
theme_minimal() +
theme(legend.position = "top")
self motivation
run model
share_mod_motiv = lmer(msg_share ~ condition*msg_motiv_self + (1 | SID) + (1 | message), data = data_mod)
summary(share_mod_motiv)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## msg_share ~ condition * msg_motiv_self + (1 | SID) + (1 | message)
## Data: data_mod
##
## REML criterion at convergence: 3071.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.1775 -0.4304 0.0575 0.4788 4.9881
##
## Random effects:
## Groups Name Variance Std.Dev.
## SID (Intercept) 0.417078 0.64582
## message (Intercept) 0.003333 0.05773
## Residual 0.212853 0.46136
## Number of obs: 1722, groups: SID, 345; message, 15
##
## Fixed effects:
## Estimate Std. Error df
## (Intercept) -0.07388 0.05283 266.90390
## conditionautonomous 0.15405 0.07306 340.07855
## msg_motiv_self 0.49946 0.02392 1657.78752
## conditionautonomous:msg_motiv_self 0.04164 0.03415 1673.42483
## t value Pr(>|t|)
## (Intercept) -1.399 0.1631
## conditionautonomous 2.108 0.0357 *
## msg_motiv_self 20.879 <0.0000000000000002 ***
## conditionautonomous:msg_motiv_self 1.219 0.2230
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtnt msg_m_
## conditntnms -0.665
## msg_mtv_slf 0.001 0.000
## cndtntnm:__ -0.001 0.000 -0.692
bayes factor using BIC
Evidence for H0 (no moderation)
share_mod_motiv_null = lmer(msg_share ~ msg_motiv_self + condition + (1 | SID) + (1 | message), data = data_mod)
bayestestR::bayesfactor_models(share_mod_motiv_null, share_mod_motiv, denominator = 2) %>%
kable(format = "pandoc", row.names = FALSE)
Model | BF |
---|---|
msg_motiv_self + condition + (1 | SID) + (1 | message) | 230.5835 |
condition * msg_motiv_self + (1 | SID) + (1 | message) | 1.0000 |
plot predicted effects
ggeffects::ggpredict(share_mod_motiv, c("condition", "msg_motiv_self [-1, 0, 1]")) %>%
data.frame() %>%
mutate(x = ifelse(x == 1, "message control", "autonomous"),
group = as.character(group),
group = ifelse(group == "0", "mean",
ifelse(group == "1", sprintf("+%s SD", group), sprintf("%s SD", group))),
group = factor(group, levels = c("-1 SD", "mean", "+1 SD"))) %>%
ggplot(aes(x = group, y = predicted, color = x)) +
geom_line(aes(group = x), position = position_dodge(width = .1)) +
geom_pointrange(aes(ymin = conf.low, ymax = conf.high), position = position_dodge(width = .1)) + scale_color_manual(name = "", values = palette_cond) +
scale_y_continuous(limits = c(-.7, .8)) +
labs(x = "", y = "predicted standardized rating\n", title = "motivation to practice social distancing\n") +
theme_minimal() +
theme(legend.position = "top")
hypothesis 5
Hypothesis: Compared to both control conditions, exposure to autonomously framed messages will be associated with greater perceived personal agency for mitigating the spread of COVID19.
❌ These data are not consistent with this hypothesis. Based on the Bayes factor, there is very strong evidence for the null.
run model
##
## Call:
## lm(formula = agency ~ condition, data = data_mod_person)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1354 -0.6101 0.2270 0.8743 1.2224
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.01049 0.07473 0.140 0.888
## conditionautonomous 0.06614 0.10773 0.614 0.540
## conditionno message control -0.09206 0.10568 -0.871 0.384
##
## Residual standard error: 0.9998 on 521 degrees of freedom
## Multiple R-squared: 0.004178, Adjusted R-squared: 0.0003556
## F-statistic: 1.093 on 2 and 521 DF, p-value: 0.336
bayes factor using BIC
Evidence for H0 (no condition effect)
agency_null = lm(agency ~ 1, data = data_mod_person)
bayestestR::bayesfactor_models(agency_null, agency_1, denominator = 2) %>%
kable(format = "pandoc", row.names = FALSE)
Model | BF |
---|---|
1 | 174.9462 |
condition | 1.0000 |
plot predicted effects
ggeffects::ggpredict(agency_1, c("condition")) %>%
data.frame() %>%
mutate(x = ifelse(x == 1, "message control",
ifelse(x == 2, "autonomous", "no message control"))) %>%
ggplot(aes(x = x, y = predicted, color = x)) +
geom_pointrange(aes(ymin = conf.low, ymax = conf.high)) +
scale_color_manual(name = "", values = palette) +
scale_y_continuous(limits = c(-.3, .4)) +
labs(x = "", y = "predicted standardized rating\n", title = "agency in mitigating the spread of COVID-19\n") +
theme_minimal() +
theme(legend.position = "none")
social distancing norms, close others
question text
For these questions, think about your closest friends and family. What proportion of them will do the following things in the next two weeks?
scale
0-100%
run model
❌ These data are not consistent with the hypothesis that exposure to autonomously framed messages increases perceived norms about social distancing when thinking about close others.
bayes factor using BIC
Evidence for H0 (no condition effect)
plot predicted effects