primary analyses
For all analyses, the data are grand-mean centered and scaled in standard units.
hypothesis 1
Hypothesis: Compared to the message control condition, autonomously framed messages will be rated as more self-relevant
✅ These data are consistent with this hypothesis.
run model
rel_self_1 = lmer(msg_rel_self ~ condition + (1 | SID) + (1 | message) + (1 | study), data = data_mod)
summary(rel_self_1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## msg_rel_self ~ condition + (1 | SID) + (1 | message) + (1 | study)
## Data: data_mod
##
## REML criterion at convergence: 1008.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.3031 -0.4032 0.1286 0.4424 2.8415
##
## Random effects:
## Groups Name Variance Std.Dev.
## SID (Intercept) 0.50094 0.7078
## message (Intercept) 0.01646 0.1283
## study (Intercept) 0.08569 0.2927
## Residual 0.42705 0.6535
## Number of obs: 419, groups: SID, 84; message, 15; study, 2
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -0.1807 0.2386 1.2781 -0.758 0.5635
## conditionautonomous 0.3206 0.1688 80.9467 1.899 0.0611 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditntnms -0.316
## convergence code: 0
## Model failed to converge with max|grad| = 0.00222765 (tol = 0.002, component 1)
plot predicted effects
ggeffects::ggpredict(rel_self_1, c("condition")) %>%
data.frame() %>%
mutate(x = ifelse(x == 1, "message control", "autonomous")) %>%
ggplot(aes(x = x, y = predicted, color = x)) +
geom_pointrange(aes(ymin = conf.low, ymax = conf.high)) +
scale_color_manual(name = "", values = palette_cond) +
scale_y_continuous(limits = c(-.8, 1)) +
labs(x = "", y = "predicted standardized rating\n", title = "self-relevance\n") +
theme_minimal() +
theme(legend.position = "none")
hypothesis 2
Hypothesis: Compared to the message control condition, autonomously framed messages will be associated with greater motivation to practice social distancing
✅ These data are consistent with this hypothesis.
run model
motiv_self_1 = lmer(msg_motiv_self ~ condition + (1 | SID) + (1 | message) + (1 | study), data = data_mod)
summary(motiv_self_1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: msg_motiv_self ~ condition + (1 | SID) + (1 | message) + (1 |
## study)
## Data: data_mod
##
## REML criterion at convergence: 1055.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.4777 -0.4088 0.1823 0.5470 2.6834
##
## Random effects:
## Groups Name Variance Std.Dev.
## SID (Intercept) 0.441832 0.66470
## message (Intercept) 0.004608 0.06789
## study (Intercept) 0.033595 0.18329
## Residual 0.511938 0.71550
## Number of obs: 419, groups: SID, 84; message, 15; study, 2
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -0.1960 0.1705 1.4941 -1.150 0.4016
## conditionautonomous 0.3906 0.1625 80.7376 2.403 0.0185 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditntnms -0.425
plot predicted effects
ggeffects::ggpredict(motiv_self_1, c("condition")) %>%
data.frame() %>%
mutate(x = ifelse(x == 1, "message control", "autonomous")) %>%
ggplot(aes(x = x, y = predicted, color = x)) +
geom_pointrange(aes(ymin = conf.low, ymax = conf.high)) +
scale_color_manual(name = "", values = palette_cond) +
scale_y_continuous(limits = c(-.8, 1)) +
labs(x = "", y = "predicted standardized rating\n", title = "motivation to practice social distancing\n") +
theme_minimal() +
theme(legend.position = "none")
hypothesis 3
Hypothesis: Compared to the message control condition, autonomously framed messages will be rated as being more likely to be shared.
✅ These data are consistent with this hypothesis.
run model
share_1 = lmer(msg_share ~ condition + (1 | SID) + (1 | message) + (1 | study), data = data_mod)
summary(share_1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: msg_share ~ condition + (1 | SID) + (1 | message) + (1 | study)
## Data: data_mod
##
## REML criterion at convergence: 925.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.7077 -0.4755 0.0384 0.5017 2.6604
##
## Random effects:
## Groups Name Variance Std.Dev.
## SID (Intercept) 0.6251805 0.79068
## message (Intercept) 0.0164372 0.12821
## study (Intercept) 0.0001283 0.01133
## Residual 0.3207012 0.56630
## Number of obs: 419, groups: SID, 84; message, 15; study, 2
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -0.1906 0.1259 58.1196 -1.514 0.1353
## conditionautonomous 0.4430 0.1826 81.7414 2.426 0.0175 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## conditntnms -0.639
## convergence code: 0
## Model failed to converge with max|grad| = 0.118834 (tol = 0.002, component 1)
plot predicted effects
ggeffects::ggpredict(share_1, c("condition")) %>%
data.frame() %>%
mutate(x = ifelse(x == 1, "message control", "autonomous")) %>%
ggplot(aes(x = x, y = predicted, color = x)) +
geom_pointrange(aes(ymin = conf.low, ymax = conf.high)) +
scale_color_manual(name = "", values = palette_cond) +
scale_y_continuous(limits = c(-.8, 1)) +
labs(x = "", y = "predicted standardized rating\n", title = "sharing intention\n") +
theme_minimal() +
theme(legend.position = "none")
hypothesis 4
Hypothesis: Self-relevance and motivation will be associated with higher sharing intentions, and these relationships will be stronger in the autonomous framing condition.
self-relevance
✅ These data are consistent with the hypothesis that self-relevance is associated with higher sharing intentions.
✅ These data are also consistent with the moderation hypothesis.
run model
share_mod_rel = lmer(msg_share ~ condition*msg_rel_self + (1 | SID) + (1 | message) + (1 | study), data = data_mod)
summary(share_mod_rel)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## msg_share ~ condition * msg_rel_self + (1 | SID) + (1 | message) +
## (1 | study)
## Data: data_mod
##
## REML criterion at convergence: 854.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.09399 -0.51062 0.05151 0.51298 2.86151
##
## Random effects:
## Groups Name Variance Std.Dev.
## SID (Intercept) 0.60396317 0.777151
## message (Intercept) 0.00911714 0.095484
## study (Intercept) 0.00006515 0.008072
## Residual 0.26030882 0.510205
## Number of obs: 419, groups: SID, 84; message, 15; study, 2
##
## Fixed effects:
## Estimate Std. Error df t value
## (Intercept) -0.15590 0.12105 65.56157 -1.288
## conditionautonomous 0.32242 0.17855 81.95499 1.806
## msg_rel_self 0.27664 0.04868 397.87684 5.682
## conditionautonomous:msg_rel_self 0.23726 0.08395 403.14066 2.826
## Pr(>|t|)
## (Intercept) 0.20230
## conditionautonomous 0.07463 .
## msg_rel_self 0.0000000257 ***
## conditionautonomous:msg_rel_self 0.00495 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtnt msg_r_
## conditntnms -0.648
## msg_rel_slf 0.052 -0.036
## cndtntnm:__ -0.031 -0.030 -0.574
## convergence code: 0
## Model failed to converge with max|grad| = 0.0814884 (tol = 0.002, component 1)
plot predicted effects
ggeffects::ggpredict(share_mod_rel, c("condition", "msg_rel_self [-1, 0, 1]")) %>%
data.frame() %>%
mutate(x = ifelse(x == 1, "message control", "autonomous"),
group = as.character(group),
group = ifelse(group == "0", "mean",
ifelse(group == "1", sprintf("+%s SD", group), sprintf("%s SD", group))),
group = factor(group, levels = c("-1 SD", "mean", "+1 SD"))) %>%
ggplot(aes(x = group, y = predicted, color = x)) +
geom_line(aes(group = x), position = position_dodge(width = .1)) +
geom_pointrange(aes(ymin = conf.low, ymax = conf.high), position = position_dodge(width = .1)) +
scale_color_manual(name = "", values = palette_cond) +
scale_y_continuous(limits = c(-.8, 1)) +
labs(x = "", y = "predicted standardized rating\n", title = "sharing intention\n") +
theme_minimal() +
theme(legend.position = "top")
self motivation
✅ These data are consistent with the hypothesis that motivation is associated with higher sharing intentions.
❌ These data are not consistent with the moderation hypothesis.
run model
share_mod_motiv = lmer(msg_share ~ condition*msg_motiv_self + (1 | SID) + (1 | message) + (1 | study), data = data_mod)
summary(share_mod_motiv)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## msg_share ~ condition * msg_motiv_self + (1 | SID) + (1 | message) +
## (1 | study)
## Data: data_mod
##
## REML criterion at convergence: 794.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.9930 -0.4864 0.0459 0.5242 3.8068
##
## Random effects:
## Groups Name Variance Std.Dev.
## SID (Intercept) 0.51577913 0.718178
## message (Intercept) 0.00697976 0.083545
## study (Intercept) 0.00001382 0.003717
## Residual 0.22585095 0.475238
## Number of obs: 419, groups: SID, 84; message, 15; study, 2
##
## Fixed effects:
## Estimate Std. Error df t value
## (Intercept) -0.12458 0.11168 78.60676 -1.116
## conditionautonomous 0.26752 0.16525 82.81896 1.619
## msg_motiv_self 0.40176 0.04460 389.33363 9.009
## conditionautonomous:msg_motiv_self 0.10868 0.07087 389.43882 1.533
## Pr(>|t|)
## (Intercept) 0.268
## conditionautonomous 0.109
## msg_motiv_self <0.0000000000000002 ***
## conditionautonomous:msg_motiv_self 0.126
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtnt msg_m_
## conditntnms -0.650
## msg_mtv_slf 0.066 -0.045
## cndtntnm:__ -0.041 -0.027 -0.629
## convergence code: 0
## Model failed to converge with max|grad| = 0.0403143 (tol = 0.002, component 1)
plot predicted effects
ggeffects::ggpredict(share_mod_motiv, c("condition", "msg_motiv_self [-1, 0, 1]")) %>%
data.frame() %>%
mutate(x = ifelse(x == 1, "message control", "autonomous"),
group = as.character(group),
group = ifelse(group == "0", "mean",
ifelse(group == "1", sprintf("+%s SD", group), sprintf("%s SD", group))),
group = factor(group, levels = c("-1 SD", "mean", "+1 SD"))) %>%
ggplot(aes(x = group, y = predicted, color = x)) +
geom_line(aes(group = x), position = position_dodge(width = .1)) +
geom_pointrange(aes(ymin = conf.low, ymax = conf.high), position = position_dodge(width = .1)) +
scale_color_manual(name = "", values = palette_cond) +
scale_y_continuous(limits = c(-.8, 1)) +
labs(x = "", y = "predicted standardized rating\n", title = "sharing intention\n") +
theme_minimal() +
theme(legend.position = "top")
hypothesis 5
Hypothesis: Compared to both control conditions, exposure to autonomously framed messages will be associated with greater perceived personal agency for mitigating the spread of COVID19.
❌ These data are not consistent with this hypothesis.
run model
##
## Call:
## lm(formula = agency ~ condition, data = data_mod_person)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.66462 -0.74546 0.08176 0.76707 1.37208
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0320 0.1452 -0.220 0.826
## conditionautonomous 0.2787 0.2187 1.274 0.205
## conditionno message control -0.1041 0.1968 -0.529 0.598
##
## Residual standard error: 0.9951 on 137 degrees of freedom
## Multiple R-squared: 0.02401, Adjusted R-squared: 0.009761
## F-statistic: 1.685 on 2 and 137 DF, p-value: 0.1893
plot predicted effects
ggeffects::ggpredict(agency_1, c("condition")) %>%
data.frame() %>%
mutate(x = ifelse(x == 1, "message control",
ifelse(x == 2, "autonomous", "no message control"))) %>%
ggplot(aes(x = x, y = predicted, color = x)) +
geom_pointrange(aes(ymin = conf.low, ymax = conf.high)) +
scale_color_manual(name = "", values = palette) +
scale_y_continuous(limits = c(-.7, .7)) +
labs(x = "", y = "predicted standardized rating\n", title = "agency to mitigate the spread of COVID-19\n") +
theme_minimal() +
theme(legend.position = "none")
social distancing norms, close others
question text
For these questions, think about your closest friends and family. What proportion of them will do the following things in the next two weeks?
scale
0-100%
run model
❌ These data are not consistent with the hypothesis that exposure to autonomously framed messages increases perceived norms about social distancing when thinking about close others.
plot predicted effects